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Symmetry

• Symmetry has proven, from time and again, to be of fundamental 
importance for describing Nature.
• In recent years, there has been a revolution in our understanding of 

global symmetries.
• The notion of global symmetry has been generalized in different 

directions. 
• These generalized global symmetries are some of the few universally 

applicable tools to analyze general quantum systems, not limited to 
supersymmetric or solvable models. 
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Generalized global symmetries
• These new symmetries lead to several surprising consequences:
• generalized ‘t Hooft anomaly matching conditions
• new implications for the phase diagram of gauge theories
• new organizing principles of topological phases in condensed matter 

physics
• new insights into naturalness problems

• Active collaboration between experts from high energy physics, condensed 
matter physics, quantum gravity, and mathematics. 
• In this talk I’ll discuss only some of these developments. Please see the 

white paper for more references. I apologize in advance for the variety of 
fascinating papers that are not discussed below.
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Generalizations
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Higher-form symmetries
e.g. center symmetry in gauge theory

Subsystem symmetries
e.g. fractons

Non-invertible symmetries
e.g. Ising model, 4d Maxwell theory, QED, QCD…

Many other generalizations of global 
symmetries not discussed here, e.g. dipole 
symmetry, asymptotic symmetry,…

=
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Symmetry and topology
• Consider a QFT in 𝑑-spacetime dimensions with a conserved Noether current 
𝜕!𝑗! = 0. We can define a (𝑑 − 1)-form 𝐽!!⋯!"#! = 𝜖!!⋯!"𝑗

!" .
• The conserved 𝑈(1) symmetry operator is 

𝑈# = exp(𝑖𝜃 2𝑑$%&𝑥 𝑗') = exp(𝑖𝜃 2𝑑$%&𝑥 𝐽&⋯($%&))

• For a relativistic QFT, the time direction is on the same footing as any other 
spatial direction [Einstein 1905]. We can therefore integrate the current on a 
general closed (𝑑 − 1)-manifold 𝑀 in 𝑑-dimensional Euclidean spacetime:

𝑈# 𝑀 = exp(𝑖𝜃 5
*
𝐽)

• The conservation equation 𝜕+𝑈# = 0 is now upgraded to the fact that 𝑈#(𝑀)
depends on 𝑀 only topologically (divergence theorem).



Ordinary global symmetry

Next, we generalize the ordinary global symmetry by modifying the 
above conditions.
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Properties of 
symmetry op.

Ordinary symmetry
𝑈, 𝑀($%&)

Example: 𝑈(1)

exp(𝑖𝜃 5
*("#!)

𝐽($%&))

Codimension
in spacetime

1 𝐽($%&) is a 𝑑 − 1-form

Topological yes 𝐽($%&) is closed, 𝑑𝐽($%&) = 0

Fusion rule group
𝑈,!𝑈,& = 𝑈,!,&

𝑈(1)
𝑈#!𝑈#& = 𝑈#!-#&



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

category
𝒟×𝒟0 ≠ 1
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Higher-form Symmetry



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

category
𝒟×𝒟0 ≠ 1
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Higher-form symmetries and anomalies
[Gaiotto-Kapustin-Seiberg-Willett 2014,…]

• The simplest example of higher-form symmetries is the one-form center 
symmetry in gauge theory. E.g. ℤ! center symmetry in 𝑆𝑈 𝑁 Yang-Mills 
theory. It acts on the Wilson lines, rather than the local operators.
• Higher-form global symmetries can have anomalies, which prevent us from 

gauging them. These anomalies lead to generalized ‘t Hooft anomaly 
matching conditions. Nontrivial constraints on renormalization group flows.

• E.g. 𝑆𝑈(2) pure gauge theory at 𝜃 = 𝜋 has a mixed anomaly between 𝐶𝑃
and the ℤ" one-form center symmetry. The low energy phase cannot be 
trivially gapped with a non-degenerate ground state. (Contrast with the 
expectation at  𝜃 = 0.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]
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Higher-groups

• Higher-group symmetry: mixture of higher-form symmetries of 
different degrees [Kapustin-Thorngren 2013, Tachikawa 2017, Cordova-Dumitrescu-
Intriligator 2018-2020, Benini-Cordova-Hsin 2018,…]. Analogous to group extensions.
• Higher-groups exist in many quantum systems in diverse dimensions: 

2+1d Chern-Simons matter theories, 3+1d gauge theories, 5+1d 
supersymmetric theories…
• Dynamical consequences. E.g. Constraints on the 3+1d axion-Yang-

Mills theory [Hidaka-Nitta-Yokokura 2020-2021, Brennan-Cordova 2020]. 
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Subsystem Symmetry 



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

category
𝒟×𝒟0 ≠ 1
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Subsystem symmetry
• There are many interesting lattice models, such as 

fractons, exhibiting subsystem symmetries.
• The subsystem symmetry charges are supported on certain 

higher-codimensional manifolds 𝐿 in space (E.g. straight lines 
on a plane) […, Paramekanti-Balent-Fisher 2002, …]. They depend NOT 
only on the topology of the manifolds.

• The number of subsystem symmetry charges generally 
depends on the number of lattice points. 

• Low energy observables are sensitive to short distance 
details: UV/IR mixing [Seiberg-Shao 2020, Gorantla-Lam-Seiberg-SHS 

2021].
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Fractons
• Fractons [Chamon ‘05, Haah ‘11, Vijay-Haah-Fu ‘16…] are a large class of 3+1d gapped lattice 

spin models with many peculiar features. Large ground state degeneracy 
~ 2#$, where 𝐿 is the number of lattice sites in every direction, reflecting 
UV/IR mixing.
• Many fracton models have subsystem symmetries, in which case the 

peculiarities are universally captured by the symmetries and their 
anomalies [Seiberg-SHS ‘20, Burnell-Devakul-Gorantla-Lam-SHS ‘21] – Generalized Landau 
paradigm.
• Fractons do not admit a conventional continuum field theory limit. 

Progress in extending the framework of QFT to incorporate these new 
phases of matter. Higher-rank gauge theory of subsystem symmetries [Pretko
2016x2, Slagle-Kim ‘17, Bulmash-Barkeshli ‘18, Ma-Hermele-Chen ‘18, You-Devakul-Sondhi-Burnell ‘19, Seiberg-Shao ‘20, 
Gorantla-Lam-Seiberg-SHS ‘20, Qi-Radzihovsky-Hermele ‘20, Slagle ‘21, Geng-Kachru-Karch-Nally-Rayhaun ‘21, Slagle-Hsin
‘21, Luo-Spieler-Sun-Karch ‘22…].

14



Compact Lifshitz theory

• There are even weirder global symmetries in other exotic models 
motivated by condensed matter systems [Haah 2011, Yoshida 2013, Ma et al. 
2020,…].
• Compact Lifshitz theory [Henley 1996, Moessner-Sondhi-Fradkin 2001, Vishwanath-Balents-

Senthil 2003,…, Lake-Hermele-Senthil 2022]: (Here ∇" is the spatial Laplacian)

ℒ =
1
2
𝜕#𝜙 " +

1
2
∇"𝜙 " , 𝜙 ∼ 𝜙 + 2𝜋

• This continuum theory is ambiguous [Gorantla-Lam-Seiberg-SHS 2022]. For 
example, on a torus of length ℓ, 𝜙 = 2𝜋𝑛𝑥/ℓ is a zero-energy 
solution for all integers 𝑛, hence infinite ground state degeneracy. 
Requires lattice regularization.
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GSD = Complexity
[Gorantla-Lam-SHS 2022]

• We discretize the space by a lattice 
graph.
• In a natural regularization of the 

theory, the ground state degeneracy 
(GSD) equals the number of spanning 
trees of the spatial graph, which is a 
common measure of complexity in 
graph theory.
• UV/IR mixing: the GSD, which is an IR 

observable, equals the complexity of 
the UV discretization of space.
• New QFT? What is QFT?
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Non-invertible Symmetries



Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

category
𝒟×𝒟0 ≠ 1
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“What’s done cannot be undone.”
• Conventionally, a global symmetry is implemented by a unitary operator 

acting on the Hilbert space [Wigner 1931].  
• In particular, conventional symmetry transformations have inverses and 

can be undone.
• In recent years, we saw rapid developments of a novel kind of global 

symmetries: non-invertible global symmetry [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-
Wang-Yin 2018, Komargodski-Ohmori-Roumpedakis-Seifnashri 2020, … Choi-Cordova-Hsin-Lam-SHS 2021, 
Kaidi-Ohmori-Zheng 2021,…].
• It is not implemented by a unitary operator and does not have an inverse. 

Yet it is an RG-flow invariant and leads to matching conditions.
• Lattice realization [Feiguin et al. 2006, Aasen-Fendley-Mong 2016, 2020, Koide-Nagoya-Yamaguchi 

2021, …]. Also known as the algebraic higher symmetry in CMT [Ji-Wen 2019, Kong-
Lan-Wen-Zhang-Zheng 2020].



Non-invertible symmetry in QED
• I will discuss one such non-invertible symmetry that exists in Nature – 3+1d 

QED in the massless limit:

ℒ =
1
4𝑒"

𝐹%&𝐹%& + 𝑖7Ψ 𝜕% − 𝑖𝐴% 𝛾%Ψ

• It is commonly stated that the classical 𝑈 1 ' axial symmetry

Ψ → exp
𝑖𝛼
2 𝛾( Ψ , 𝛼 ∼ 𝛼 + 2𝜋

is broken by the ABJ anomaly quantum mechanically [Adler 1969, Bell-Jackiw 1969].
• Recently, it was realized that the continuous, invertible 𝑈 1 ' axial 

symmetry is not completely broken, but it is resurrected as a discrete, non-
invertible global symmetry labeled by the rational numbers [Choi-Lam-SHS 2022, 
Cordova-Ohmori 2022].



QED
• The axial current 𝑗!" = #Ψ𝛾#𝛾!Ψ obeys the anomalous conservation equation

𝑑 ⋆ 𝑗" =
1
4𝜋$

𝐹 ∧ 𝐹

• Naively, we can define the symmetry operator

𝑈% 𝑀 = exp(&%
$ ∮' ⋆ 𝑗

")
• However, it is not conserved (topological) because of the anomalous conservation 

equation.
• Adler defined a gauge non-invariant current which is formally conserved, 𝑑 ⋆ ̂𝚥" = 0,

⋆ ̂𝚥" ≡⋆ 𝑗" −
1
4𝜋$ 𝐴𝑑𝐴

• But the symmetry operator is not gauge invariant on a general three-manifold 𝑀
;𝑈% 𝑀 = exp[&%

$ ∮' (⋆ 𝑗
" − (

)*!
𝐴𝑑𝐴)]



Dilemma

Operator Gauge-invariant? Conserved 
(topological)?

𝑈3 𝑀 = exp(43. ∮* ⋆ 𝑗
5) ✓ ✗

B𝑈3 𝑀 = exp[43. ∮* (⋆ 𝑗
5 − &

67& 𝐴𝑑𝐴)] ✗ ✓



Rational angles

• Let us be less ambitious, and assume the axial rotation angle is a 
fraction:

𝛼 =
2𝜋
𝑁

4𝑈"$
%
𝑀 = exp[;

&
(
2𝜋𝑖
2𝑁

⋆ 𝑗' −
𝑖

4𝜋𝑁
𝐴𝑑𝐴)]

• The operator 4𝑈!"
#
𝑀 is still not gauge invariant because of the 

fractional Chern-Simons term.



Fractional quantum Hall state

“ −
𝑖

4𝜋𝑁
5
*
𝐴𝑑𝐴 ”

• In condensed matter physics, this action is commonly used to describe the 𝜈 =
1/𝑁 fractional quantum Hall effect (FQHE) in 2+1d.
• It is however not gauge invariant.  Fortunately, there is a well-known fix to this 

issue.
• The more precise, gauge invariant Lagrangian for the FQHE is

5
*
(
𝑖𝑁
4𝜋

𝑎𝑑𝑎 +
𝑖
2𝜋

𝑎𝑑𝐴)

where 𝑎 is a dynamical 𝑈 1 gauge field living on the 2+1d manifold 𝑀.

• The two actions are related by illegally integrating out 𝑎 to obtain “𝑎 = − 5
8 ”.



Back to QED
[Choi-Lam-SHS 2022, Cordova-Ohmori 2022]

• Motivated by the discussion of FQHE in 2+1d, we define a new operator 
𝒟)/! 𝑀 in 3+1d QED: (Easy to generalize to 𝒟+/! with coprime 𝑝, 𝑁)

G𝑈",
!
𝑀 = exp[I

-
(
2𝜋𝑖
2𝑁 ⋆ 𝑗' −

𝑖
4𝜋𝑁𝐴𝑑𝐴)]

↓

𝒟)/! 𝑀 ≡ exp[I
-
(
2𝜋𝑖
2𝑁

⋆ 𝑗' +
𝑖𝑁
4𝜋

𝑎𝑑𝑎 +
𝑖
2𝜋

𝑎𝑑𝐴)]

• Easy to generalize to 𝒟+/!.
• The new operator is gauge-invariant and conserved (topological). The price 

we pay is that it NOT invertible.
𝒟)/!×𝒟)/!

. = exp[∮- (
/!
0,
𝑎𝑑𝑎 − /!

0,
S𝑎𝑑 S𝑎 + /

",
(𝑎 − S𝑎)𝑑𝐴)] ≠ 1

𝑎: auxiliary field on 𝑀
𝐴: bulk gauge field



Non-invertible global symmetry
Operator Gauge-

invariant?
Conserved 

(topological)?
Invertible?

𝑈! 𝑀 = exp("!
# ∮$ ⋆ 𝑗

%) ✓ ✗ N/A

3𝑈! 𝑀 = exp["!
# ∮$ (⋆ 𝑗

% − &
'(!

𝐴𝑑𝐴)] ✗ ✓ ✓

𝒟&
)
𝑀 =

exp[:
$
(
2𝜋𝑖
2𝑁

⋆ 𝑗% +
𝑖𝑁
4𝜋

𝑎𝑑𝑎 +
𝑖
2𝜋

𝑎𝑑𝐴)] ✓ ✓ ✗



Electron mass

• Naturalness [‘t Hooft 1980]: Impose a global symmetry group 𝐺.  The 
Lagrangian should include all 𝐺-invariant terms with coefficients of 
order one with no fine-tuning. 
• Massless QED Lagrangian: ℒ = B

CD!
𝐹EF𝐹EF + 𝑖HΨ 𝜕E − 𝑖𝐴E 𝛾EΨ

• The electron mass term 𝑚HΨΨ violates the non-invertible global 
symmetry. 
• Therefore, electron is naturally massless in QED because of the non-

invertible global symmetry.
• See [Cordova-Ohmori 2022] for more discussions on naturalness in 

axion physics.



‘t Hooft Naturalness

‘t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)



QCD and pion decay
[Choi-Lam-SHS 2022]

• Below the electroweak scale, the massless QCD Lagrangian for the up 
and down quarks has an axial global symmetry (corresponding to 𝜋G)

𝑈 1 'H:
𝑢
𝑑

→ exp(𝑖𝛼𝛾I𝜎H)
𝑢
𝑑

• The ABJ anomaly with the electromagnetic 𝑈 1 J& gauge symmetry 
turns 𝑈 1 'H into an infinite non-invertible global symmetry 𝒟K/%.
• The 𝜋G𝐹 ∧ 𝐹 coupling in the IR pion Lagrangian is necessary to match 

this non-invertible global symmetry in QCD.
• To put it in the maximally offensive way, the neutral pion decays 𝜋G →
𝛾𝛾 because of the non-invertible global symmetry.
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Conclusion
• We have discussed three generalizations of global symmetries, higher form 

symmetries, subsystem symmetries, and non-invertible symmetries. Many 
other generalizations.
• This more general perspective of global symmetry unifies many known 

phenomena into a coherent framework.
• Generalized global symmetries and their anomalies provide an invariant 

characterization of many topological phases of matter such as fractons. [John’s talk]
• More importantly, they lead to new dynamical consequences that are 

otherwise obscured.
• Generalizations of the ‘t Hooft anomaly matching condition lead to nontrivial 

constraints on renormalization group flows. Naturalness problems?
• New symmetries in new and old QFTs, including our Nature!
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Generalized global symmetries
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
symmetry

Codimension
in spacetime

1 > 1 > 1 ≥ 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

group
𝑔&×𝑔. = 𝑔/

category
𝒟×𝒟0 ≠ 1
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Thank you for listening!



Non-invertible symmetry

1988-

Conserved 
charges in 
integrable 
systems

Non-inv 
lines in 
1+1d RCFT 
2+1d TQFT

2017-

Non-inv op as 
generalized sym

Constraints on RG
in 1+1d

2021

3+1d gauge 
theories

2010

Non-inv 
surfaces in 
2+1d TQFT

1960s 2022 Mar

Non-inv sym
from higher-
form sym

Non-inv sym
in Nature

2022 May

???

Above I mostly focus on codim-1 non-inv op.
Many many other developments not listed.

Snowmass meeting
at KITP in Feb.



Non-invertible symmetries in our dimensions

• Non-invertible symmetries exist in many familiar lattice and continuum quantum 
systems: 3+1d Maxwell theory, Yang-Mills theory, QED, QCD, 𝒩 = 4 super Yang-
Mills…
• Some of them (but not all) arise from invertible symmetries via gauging.
• They have generalized anomalies which lead to nontrivial constraints on 

renormalization group flows [Choi-Cordova-Hsin-Lam-SHS 2021,2022, Kaidi-Ohmori-Zheng 2021].
• They have been used to construct new QFTs via twisted compactifications [Kaidi-Zafrir-

Zheng 2022].
• In quantum gravity, the no global symmetry conjecture is argued to be 

generalized to the absence of invertible and non-invertible global symmetries 
[Rudelius-SHS 2020, Heidenreich-McNamara-Montero-Reece-Rudelius-Valenzuela 2021, McNamara 2021].
• Other hidden symmetries in the Standard Model?
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